Using neural networks for peanut maturity prediction with UAV images

Authors

DOI:

https://doi.org/10.52755/sas.v2iedesp2.129

Keywords:

Digital Agriculture, Artificial Intelligence, Remote Sensing

Abstract

Remote sensing techniques and machine learning are important tools for the agricultural sector, and can bring significant improvements in agricultural management. In view of this, the objective was to create a method to predict peanut maturity from unmanned aerial vehicle

(UAV) images, using artificial neural networks (ANN). The experiment was conducted in a commercial field in the 2019/20 crop year in the municipality of Dumont - SP. The collection of images was obtained through the Micasense RedEdge multispectral camera. Two ANN models (RBF and MLP) were used to predict the peanut maturity index, with the spectral bands and 7 vegetation indices being used in the input layer. For validation of the models, 20% of the data were used and for training 80%. The NDRE was able to predict the PMI with accuracy (0.90 and 0.88) and precision (0.06 and 0.06) for the MLP and RBF networks respectively. The performance evaluation of the models indicates that the RBF and MLP networks are similar for predicting peanut maturity. It is concluded from this work that maturity index can be predicted using vegetation indices from UAV images.

Downloads

Download data is not yet available.

Author Biographies

Jarlyson Brunno Costa Souza, Universidade Estadual Paulista " Julio de Mesquita Filho"

Doutorando no programa de Pós-graduação em Produção Vegetal pela Universidade Estadual Paulista "Júlio de Mesquita Filho". E-mail:  jarlyson.brunno@unesp.br

Samira Luns Hatum de Almeida, Universidade Estadual Paulista "Júlio de Mesquita Filho.

Doutorando no programa de Pós-graduação em Produção Vegetal pela Universidade Estadual Paulista "Júlio de Mesquita Filho. E-mail: samira.lh.almeida.unesp.br.

Armando Lopes de Brito de Filho, niversidade Estadual Paulista "Júlio de Mesquita Filho".

Doutorando no programa de Pós-graduação em Ciência do Solo pela Universidade Estadual Paulista "Júlio de Mesquita Filho". E-mail: armando.brito@unesp.br.

Mirla Silva Monteles, Universidade Federal do Maranhão.

Graduando em Engenharia Agrícola pela Universidade Federal do Maranhão. E-mail: mirla-s2@hotmail.com

Leonardo Barbosa Silva, Universidade Federal do Maranhão.

Graduando em Agronomia pela Universidade Federal do Maranhão. E-mail: leonardoagronomo@hotmail.com

Rouverson Pereira da Silva, Universidade Estadual Paulista - UNESP

Prof. Dr. Livre-Docente da UNESP/FCAV (Produção Vegetal), Jaboticabal-SP. E-mail: rouverson.silva@unesp.br.

Published

2021-09-30

How to Cite

Souza, J. B. C. ., de Almeida, S. L. H., de Brito de Filho, A. L. ., Monteles, M. S. ., Silva, L. B. ., & da Silva, R. P. . (2021). Using neural networks for peanut maturity prediction with UAV images. South American Sciences, 2(edesp2), e21129. https://doi.org/10.52755/sas.v2iedesp2.129

Most read articles by the same author(s)